Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Immunol ; 14: 1129766, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2228264

RESUMEN

Background: Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods: We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results: Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions: Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Lesiones del Sistema Vascular , Humanos , Glicocálix/metabolismo , Células Endoteliales , Sindecano-1/metabolismo , Lesiones del Sistema Vascular/metabolismo , Ácido Hialurónico/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Perfilación de la Expresión Génica
2.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1883373

RESUMEN

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Asunto(s)
Ácido Hialurónico , Himecromona , Administración Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Himecromona/administración & dosificación , Himecromona/efectos adversos
3.
EBioMedicine ; 76: 103861, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1734342

RESUMEN

BACKGROUND: Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS: Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS: Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION: HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING: The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).


Asunto(s)
Redes Reguladoras de Genes/genética , Genoma Humano , Ácido Hialurónico/metabolismo , ARN Viral/genética , SARS-CoV-2/genética , Antagomirs/metabolismo , Proteínas Argonautas/genética , Secuencia de Bases , COVID-19/patología , COVID-19/virología , Línea Celular , Progresión de la Enfermedad , Elementos de Facilitación Genéticos/genética , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/sangre , MicroARNs/genética , ARN Viral/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Regulación hacia Arriba
4.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1327774

RESUMEN

Vascular injury has emerged as a complication contributing to morbidity in coronavirus disease 2019 (COVID-19). The glycosaminoglycan hyaluronan (HA) is a major component of the glycocalyx, a protective layer of glycoconjugates that lines the vascular lumen and regulates key endothelial cell functions. During critical illness, as in the case of sepsis, enzymes degrade the glycocalyx, releasing fragments with pathologic activities into circulation and thereby exacerbating disease. Here, we analyzed levels of circulating glycosaminoglycans in 46 patients with COVID-19 ranging from moderate to severe clinical severity and measured activities of corresponding degradative enzymes. This report provides evidence that the glycocalyx becomes significantly damaged in patients with COVID-19 and corresponds with severity of disease. Circulating HA fragments and hyaluronidase, 2 signatures of glycocalyx injury, strongly associate with sequential organ failure assessment scores and with increased inflammatory cytokine levels in patients with COVID-19. Pulmonary microvascular endothelial cells exposed to COVID-19 milieu show dysregulated HA biosynthesis and degradation, leading to production of pathological HA fragments that are released into circulation. Finally, we show that HA fragments present at high levels in COVID-19 patient plasma can directly induce endothelial barrier dysfunction in a ROCK- and CD44-dependent manner, indicating a role for HA in the vascular pathology of COVID-19.


Asunto(s)
COVID-19/metabolismo , Endotelio Vascular/metabolismo , Ácido Hialurónico/metabolismo , Anciano , COVID-19/sangre , COVID-19/patología , Citocinas/sangre , Endotelio Vascular/patología , Femenino , Glicocálix/metabolismo , Glicocálix/patología , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/sangre , Hialuronoglucosaminidasa/sangre , Hialuronoglucosaminidasa/metabolismo , Masculino , Persona de Mediana Edad , Quinasas Asociadas a rho/metabolismo
5.
Arch Med Res ; 51(7): 645-653, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1023467

RESUMEN

BACKGROUND: The SARS-CoV-2 is the etiological agent causing COVID-19 which has infected more than 2 million people with more than 200000 deaths since its emergence in December 2019. In the majority of cases patients are either asymptomatic or show mild to moderate symptoms and signs of a common cold. A subset of patients, however, develop a severe atypical pneumonia, with the characteristic ground-glass appearance on chest x-ray and computerized tomography, which evolves into an acute respiratory distress syndrome, that requires mechanical ventilation and eventually results in multiple organ failure and death. The Molecular pathogenesis of COVID-19 is still unknown. AIM OF THE STUDY: In the present work we performed a stringent metanalysis from the publicly available RNAseq data from bronchoalveolar cells and peripheral blood mononuclear cells to elucidate molecular alterations and cellular deconvolution to identify immune cell profiles. RESULTS: Alterations in genes involved in hyaluronan, glycosaminoglycan and mucopolysaccharides metabolism were over-represented in bronchoalveolar cells infected by SARS-CoV-2, as well as potential lung infiltration with neutrophils, T CD4+ cell and macrophages. The blood mononuclear cells presented a proliferative state. Dramatic reduction of NK and T lymphocytes, whereas an exacerbated increase in monocytes. CONCLUSIONS: In summary our results revealed molecular pathogenesis of the SARS-CoV-2 infection to bronchoalveolar cells inducing the hyaluronan and glycosaminoglycan metabolism that could shape partially the components of the ground-glass opacities observed in CT. And the potential immune response profile in COVID-19.


Asunto(s)
COVID-19 , Glicosaminoglicanos , Líquido del Lavado Bronquioalveolar/citología , COVID-19/diagnóstico por imagen , COVID-19/genética , COVID-19/metabolismo , COVID-19/patología , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurónico/genética , Ácido Hialurónico/metabolismo , Leucocitos Mononucleares/citología , Pulmón/diagnóstico por imagen , Pulmón/patología , SARS-CoV-2
6.
J Biol Chem ; 295(45): 15418-15422, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: covidwho-797683

RESUMEN

Severe coronavirus disease 2019 (Covid-19) is characterized by inflammation of the lungs with increasing respiratory impairment. In fatal Covid-19, lungs at autopsy have been filled with a clear liquid jelly. However, the nature of this finding has not yet been determined. The aim of the study was to demonstrate whether the lungs of fatal Covid-19 contain hyaluronan, as it is associated with inflammation and acute respiratory distress syndrome (ARDS) and may have the appearance of liquid jelly. Lung tissue obtained at autopsy from three deceased Covid-19 patients was processed for hyaluronan histochemistry using a direct staining method and compared with staining in normal lung tissue. Stainings confirmed that hyaluronan is obstructing alveoli with presence in exudate and plugs, as well as in thickened perialveolar interstitium. In contrast, normal lungs only showed hyaluronan in intact alveolar walls and perivascular tissue. This is the first study to confirm prominent hyaluronan exudates in the alveolar spaces of Covid-19 lungs, supporting the notion that the macromolecule is involved in ARDS caused by SARS-CoV-2. The present finding may open up new treatment options in severe Covid-19, aiming at reducing the presence and production of hyaluronan in the lungs.


Asunto(s)
COVID-19/metabolismo , Ácido Hialurónico/metabolismo , Pulmón/metabolismo , COVID-19/patología , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad
7.
J Histochem Cytochem ; 68(12): 907-927, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-637123

RESUMEN

Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.


Asunto(s)
alfa-Globulinas/metabolismo , alfa-Globulinas/análisis , Animales , Artritis/metabolismo , Artritis/patología , Asma/metabolismo , Asma/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrosis , Humanos , Ácido Hialurónico/metabolismo , Inflamación/metabolismo , Inflamación/patología , Sepsis/metabolismo , Sepsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA